IMPRiND Project

Latest news

Publication in Nature by the LMB team

The paper on "Structure-based classification of Tauopathies", by Michel Goedert and his colleagues at LMB, is now online at @nature. To ...

New paper in the Molecular Neurodegeneration journal

Induced αS lesions in mouse and human brain cultures. This publication from the DZNE team shows that now we can study such lesions in a ...

RESEARCH HIGHLIGHT – A stem cell-based model offers new insights into the mechanisms of neuronal loss in Parkinson’s disease

Dr Tofaris and his team at UOXF in collaboration with Ronald Melki (CNRS) have now come up with a working laboratory model. They used ...

Blocking aggregate propagation in neurodegenerative diseases


Blocking aggregate propagation in neurodegenerative diseases IMPRiND – Inhibiting Misfolded protein Propagation In Neurodegenerative Diseases – is an international consortium that aims to map and target critical steps in the propagation of misfolded tau and α-synuclein, considered the main culprits of neurodegeneration in Alzheimer's and Parkinson's disease respectively. Our plans are built upon:
  • Identify disease-relevant misfolded assemblies, imprint their biological properties in vitro and/or in cellulo and generate homogeneous populations in order to assay and interfere with their pathogenic effects.
  • Develop and miniaturise assays to monitor up-take, secretion, clearance and oligomerisation using bimolecular fluorescence complementation of oligomeric species or transfer of untagged assemblies to fluorescently labelled fibril-naïve cells and measure markers of early proteotoxicity that are suitable for high throughput or high content screens.
  • Perform genetic screens based on disease-relevant gene/protein networks and assess druggability of identified targets.
  • Deliver robust validation assays for these molecular events in complex cellular systems with greater functional resemblance to the native milieu of the brain such as iPSC-based models and organotypic cultures or simple model organisms such as Drosophila or zebrafish.
  • Improve existing animal models in order to standardise pathological readouts for in vivo validation of modifiers, correlate them with novel peripheral or in situ markers using microdialysis to accelerate the assessment of therapeutic interventions and relevance to humans, e.g. by transplantation of human iPSC neurons in animals.
In the IMPRiND consortium, we will construct this entire pipeline to examine the propagation of α-synuclein and tau and test their tractability against disease progression.
IMPRIND started in March 2017 and will run until February 2021.

Most recent publications

1.
Structure-based classification of tauopathies.
Nature 598, 359–363 (2021). doi:10.1038/s41586-021-03911-7
2.
Seeding Propensity and Characteristics of Pathogenic αSyn Assemblies in Formalin-Fixed Human Tissue from the Enteric Nervous System, Olfactory Bulb, and Brainstem in Cases Staged for Parkinson’s Disease.
Cells 10, 139 (2021). doi:10.3390/cells10010139
3.
Microglial inclusions and neurofilament light chain release follow neuronal α-synuclein lesions in long-term brain slice cultures.
Molecular Neurodegeneration 16, 54 (2021). doi:10.1186/s13024-021-00471-2
4.
Identification of cis-acting determinants mediating the unconventional secretion of tau.
Scientific Reports 11, 12946 (2021). doi:10.1038/s41598-021-92433-3
5.
The differential solvent exposure of N-terminal residues provides ‘fingerprints’ of alpha-synuclein fibrillar polymorphs.
Journal of Biological Chemistry 100737 (2021). doi:10.1016/j.jbc.2021.100737
6.
Tau assemblies do not behave like independently acting prion-like particles in mouse neural tissue.
Acta Neuropathologica Communications 9, 41 (2021). doi:10.1186/s40478-021-01141-6
7.
TNF-α and α-synuclein fibrils differently regulate human astrocyte immune reactivity and impair mitochondrial respiration.
Cell Reports 34, 108895 (2021). doi:10.1016/j.celrep.2021.108895
8.
Phenotypic manifestation of α-synuclein strains derived from Parkinson’s disease and multiple system atrophy in human dopaminergic neurons.
Nature Communications 12, 3817 (2021). doi:10.1038/s41467-021-23682-z
9.
Overexpression of α-Synuclein by Oligodendrocytes in Transgenic Mice Does Not Recapitulate the Fibrillar Aggregation Seen in Multiple System Atrophy.
Cells 9, 2371 (2020). doi:10.3390/cells9112371
10.
Distinct alpha‐Synuclein species induced by seeding are selectively cleared by the Lysosome or the Proteasome in neuronally differentiated SH‐SY5Y cells.
Journal of Neurochemistry jnc.15174 (2020). doi:10.1111/jnc.15174. Archive: https://zenodo.org/record/4570369#.YD0kCV1KiWh
11.
Structures of α-synuclein filaments from multiple system atrophy.
Nature 585, 464–469 (2020). doi:10.1038/s41586-020-2317-6
12.
Interaction of the chaperones alpha B-crystallin and CHIP with fibrillar alpha-synuclein: Effects on internalization by cells and identification of interacting interfaces.
Biochemical and Biophysical Research Communications 527, 760–769 (2020). doi:10.1016/j.bbrc.2020.04.091
13.
The expression level of alpha-synuclein in different neuronal populations is the primary determinant of its prion-like seeding.
Scientific Reports 10, 4895 (2020). doi:10.1038/s41598-020-61757-x
14.
Novel self-replicating α-synuclein polymorphs that escape ThT monitoring can spontaneously emerge and acutely spread in neurons.
Science Advances 6, eabc4364 (2020). doi:10.1126/sciadv.abc4364
15.
Effects of pharmacological modulators of α-synuclein and tau aggregation and internalization.
Scientific Reports 10, 12827 (2020). doi:10.1038/s41598-020-69744-y
16.
Les protéinopathies infectieuses de Parkinson et d’Alzheimer.
Bulletin de l’Académie Nationale de Médecine 204, 224–231 (2020). doi:10.1016/j.banm.2019.12.019. Archive: https://hal-cea.archives-ouvertes.fr/cea-02859853
17.
Disassembly of Tau fibrils by the human Hsp70 disaggregation machinery generates small seeding-competent species.
Journal of Biological Chemistry 295, 9676–9690 (2020). doi:10.1074/jbc.RA120.013478
18.
Acute targeting of pre-amyloid seeds in transgenic mice reduces Alzheimer-like pathology later in life.
Nature Neuroscience 23, 1580–1588 (2020). doi:10.1038/s41593-020-00737-w. Archive: https://zenodo.org/record/4562254#.YDfVlF1KgdW
19.
The Role of Antibodies and Their Receptors in Protection Against Ordered Protein Assembly in Neurodegeneration.
Frontiers in Immunology 10, 1139 (2019). doi:10.3389/fimmu.2019.01139
20.
α‐synuclein oligomers and fibrils: a spectrum of species, a spectrum of toxicities.
Journal of Neurochemistry 150, 522–534 (2019). doi:10.1111/jnc.14808
21.
LRRK2 modifies α-syn pathology and spread in mouse models and human neurons.
Acta Neuropathologica 137, 961–980 (2019). doi:10.1007/s00401-019-01995-0
22.
Endogenous oligodendroglial alpha-synuclein and TPPP/p25α orchestrate alpha-synuclein pathology in experimental multiple system atrophy models.
Acta Neuropathologica 138, 415–441 (2019). doi:10.1007/s00401-019-02014-y
23.
Reduced serum immunoglobulin G concentrations in multiple sclerosis: prevalence and association with disease-modifying therapy and disease course.
Therapeutic Advances in Neurological Disorders 12, 175628641987834 (2019). doi:10.1177/1756286419878340
24.
Measurement of Tau Filament Fragmentation Provides Insights into Prion-like Spreading.
ACS Chemical Neuroscience 9, 1276–1282 (2018). doi:10.1021/acschemneuro.8b00094
25.
Tau filaments from multiple cases of sporadic and inherited Alzheimer’s disease adopt a common fold.
Acta Neuropathologica 136, 699–708 (2018). doi:10.1007/s00401-018-1914-z

1.
Structure-based classification of tauopathies.
Nature 598, 359–363 (2021). doi:10.1038/s41586-021-03911-7
2.
Seeding Propensity and Characteristics of Pathogenic αSyn Assemblies in Formalin-Fixed Human Tissue from the Enteric Nervous System, Olfactory Bulb, and Brainstem in Cases Staged for Parkinson’s Disease.
Cells 10, 139 (2021). doi:10.3390/cells10010139
3.
Microglial inclusions and neurofilament light chain release follow neuronal α-synuclein lesions in long-term brain slice cultures.
Molecular Neurodegeneration 16, 54 (2021). doi:10.1186/s13024-021-00471-2
4.
Identification of cis-acting determinants mediating the unconventional secretion of tau.
Scientific Reports 11, 12946 (2021). doi:10.1038/s41598-021-92433-3
5.
The differential solvent exposure of N-terminal residues provides ‘fingerprints’ of alpha-synuclein fibrillar polymorphs.
Journal of Biological Chemistry 100737 (2021). doi:10.1016/j.jbc.2021.100737
6.
Tau assemblies do not behave like independently acting prion-like particles in mouse neural tissue.
Acta Neuropathologica Communications 9, 41 (2021). doi:10.1186/s40478-021-01141-6
7.
TNF-α and α-synuclein fibrils differently regulate human astrocyte immune reactivity and impair mitochondrial respiration.
Cell Reports 34, 108895 (2021). doi:10.1016/j.celrep.2021.108895
8.
Phenotypic manifestation of α-synuclein strains derived from Parkinson’s disease and multiple system atrophy in human dopaminergic neurons.
Nature Communications 12, 3817 (2021). doi:10.1038/s41467-021-23682-z
9.
Overexpression of α-Synuclein by Oligodendrocytes in Transgenic Mice Does Not Recapitulate the Fibrillar Aggregation Seen in Multiple System Atrophy.
Cells 9, 2371 (2020). doi:10.3390/cells9112371
10.
Distinct alpha‐Synuclein species induced by seeding are selectively cleared by the Lysosome or the Proteasome in neuronally differentiated SH‐SY5Y cells.
Journal of Neurochemistry jnc.15174 (2020). doi:10.1111/jnc.15174. Archive: https://zenodo.org/record/4570369#.YD0kCV1KiWh
11.
Structures of α-synuclein filaments from multiple system atrophy.
Nature 585, 464–469 (2020). doi:10.1038/s41586-020-2317-6
12.
Interaction of the chaperones alpha B-crystallin and CHIP with fibrillar alpha-synuclein: Effects on internalization by cells and identification of interacting interfaces.
Biochemical and Biophysical Research Communications 527, 760–769 (2020). doi:10.1016/j.bbrc.2020.04.091
13.
The expression level of alpha-synuclein in different neuronal populations is the primary determinant of its prion-like seeding.
Scientific Reports 10, 4895 (2020). doi:10.1038/s41598-020-61757-x
14.
Novel self-replicating α-synuclein polymorphs that escape ThT monitoring can spontaneously emerge and acutely spread in neurons.
Science Advances 6, eabc4364 (2020). doi:10.1126/sciadv.abc4364
15.
Effects of pharmacological modulators of α-synuclein and tau aggregation and internalization.
Scientific Reports 10, 12827 (2020). doi:10.1038/s41598-020-69744-y
16.
Les protéinopathies infectieuses de Parkinson et d’Alzheimer.
Bulletin de l’Académie Nationale de Médecine 204, 224–231 (2020). doi:10.1016/j.banm.2019.12.019. Archive: https://hal-cea.archives-ouvertes.fr/cea-02859853
17.
Disassembly of Tau fibrils by the human Hsp70 disaggregation machinery generates small seeding-competent species.
Journal of Biological Chemistry 295, 9676–9690 (2020). doi:10.1074/jbc.RA120.013478
18.
Acute targeting of pre-amyloid seeds in transgenic mice reduces Alzheimer-like pathology later in life.
Nature Neuroscience 23, 1580–1588 (2020). doi:10.1038/s41593-020-00737-w. Archive: https://zenodo.org/record/4562254#.YDfVlF1KgdW
19.
The Role of Antibodies and Their Receptors in Protection Against Ordered Protein Assembly in Neurodegeneration.
Frontiers in Immunology 10, 1139 (2019). doi:10.3389/fimmu.2019.01139
20.
α‐synuclein oligomers and fibrils: a spectrum of species, a spectrum of toxicities.
Journal of Neurochemistry 150, 522–534 (2019). doi:10.1111/jnc.14808
21.
LRRK2 modifies α-syn pathology and spread in mouse models and human neurons.
Acta Neuropathologica 137, 961–980 (2019). doi:10.1007/s00401-019-01995-0
22.
Endogenous oligodendroglial alpha-synuclein and TPPP/p25α orchestrate alpha-synuclein pathology in experimental multiple system atrophy models.
Acta Neuropathologica 138, 415–441 (2019). doi:10.1007/s00401-019-02014-y
23.
Reduced serum immunoglobulin G concentrations in multiple sclerosis: prevalence and association with disease-modifying therapy and disease course.
Therapeutic Advances in Neurological Disorders 12, 175628641987834 (2019). doi:10.1177/1756286419878340
24.
Measurement of Tau Filament Fragmentation Provides Insights into Prion-like Spreading.
ACS Chemical Neuroscience 9, 1276–1282 (2018). doi:10.1021/acschemneuro.8b00094
25.
Tau filaments from multiple cases of sporadic and inherited Alzheimer’s disease adopt a common fold.
Acta Neuropathologica 136, 699–708 (2018). doi:10.1007/s00401-018-1914-z

1.
Structure-based classification of tauopathies.
Nature 598, 359–363 (2021). doi:10.1038/s41586-021-03911-7
2.
Seeding Propensity and Characteristics of Pathogenic αSyn Assemblies in Formalin-Fixed Human Tissue from the Enteric Nervous System, Olfactory Bulb, and Brainstem in Cases Staged for Parkinson’s Disease.
Cells 10, 139 (2021). doi:10.3390/cells10010139
3.
Microglial inclusions and neurofilament light chain release follow neuronal α-synuclein lesions in long-term brain slice cultures.
Molecular Neurodegeneration 16, 54 (2021). doi:10.1186/s13024-021-00471-2
4.
Identification of cis-acting determinants mediating the unconventional secretion of tau.
Scientific Reports 11, 12946 (2021). doi:10.1038/s41598-021-92433-3
5.
The differential solvent exposure of N-terminal residues provides ‘fingerprints’ of alpha-synuclein fibrillar polymorphs.
Journal of Biological Chemistry 100737 (2021). doi:10.1016/j.jbc.2021.100737
6.
Tau assemblies do not behave like independently acting prion-like particles in mouse neural tissue.
Acta Neuropathologica Communications 9, 41 (2021). doi:10.1186/s40478-021-01141-6
7.
TNF-α and α-synuclein fibrils differently regulate human astrocyte immune reactivity and impair mitochondrial respiration.
Cell Reports 34, 108895 (2021). doi:10.1016/j.celrep.2021.108895
8.
Phenotypic manifestation of α-synuclein strains derived from Parkinson’s disease and multiple system atrophy in human dopaminergic neurons.
Nature Communications 12, 3817 (2021). doi:10.1038/s41467-021-23682-z
9.
Overexpression of α-Synuclein by Oligodendrocytes in Transgenic Mice Does Not Recapitulate the Fibrillar Aggregation Seen in Multiple System Atrophy.
Cells 9, 2371 (2020). doi:10.3390/cells9112371
10.
Distinct alpha‐Synuclein species induced by seeding are selectively cleared by the Lysosome or the Proteasome in neuronally differentiated SH‐SY5Y cells.
Journal of Neurochemistry jnc.15174 (2020). doi:10.1111/jnc.15174. Archive: https://zenodo.org/record/4570369#.YD0kCV1KiWh
11.
Structures of α-synuclein filaments from multiple system atrophy.
Nature 585, 464–469 (2020). doi:10.1038/s41586-020-2317-6
12.
Interaction of the chaperones alpha B-crystallin and CHIP with fibrillar alpha-synuclein: Effects on internalization by cells and identification of interacting interfaces.
Biochemical and Biophysical Research Communications 527, 760–769 (2020). doi:10.1016/j.bbrc.2020.04.091
13.
The expression level of alpha-synuclein in different neuronal populations is the primary determinant of its prion-like seeding.
Scientific Reports 10, 4895 (2020). doi:10.1038/s41598-020-61757-x
14.
Novel self-replicating α-synuclein polymorphs that escape ThT monitoring can spontaneously emerge and acutely spread in neurons.
Science Advances 6, eabc4364 (2020). doi:10.1126/sciadv.abc4364
15.
Effects of pharmacological modulators of α-synuclein and tau aggregation and internalization.
Scientific Reports 10, 12827 (2020). doi:10.1038/s41598-020-69744-y
16.
Les protéinopathies infectieuses de Parkinson et d’Alzheimer.
Bulletin de l’Académie Nationale de Médecine 204, 224–231 (2020). doi:10.1016/j.banm.2019.12.019. Archive: https://hal-cea.archives-ouvertes.fr/cea-02859853
17.
Disassembly of Tau fibrils by the human Hsp70 disaggregation machinery generates small seeding-competent species.
Journal of Biological Chemistry 295, 9676–9690 (2020). doi:10.1074/jbc.RA120.013478
18.
Acute targeting of pre-amyloid seeds in transgenic mice reduces Alzheimer-like pathology later in life.
Nature Neuroscience 23, 1580–1588 (2020). doi:10.1038/s41593-020-00737-w. Archive: https://zenodo.org/record/4562254#.YDfVlF1KgdW
19.
The Role of Antibodies and Their Receptors in Protection Against Ordered Protein Assembly in Neurodegeneration.
Frontiers in Immunology 10, 1139 (2019). doi:10.3389/fimmu.2019.01139
20.
α‐synuclein oligomers and fibrils: a spectrum of species, a spectrum of toxicities.
Journal of Neurochemistry 150, 522–534 (2019). doi:10.1111/jnc.14808
21.
LRRK2 modifies α-syn pathology and spread in mouse models and human neurons.
Acta Neuropathologica 137, 961–980 (2019). doi:10.1007/s00401-019-01995-0
22.
Endogenous oligodendroglial alpha-synuclein and TPPP/p25α orchestrate alpha-synuclein pathology in experimental multiple system atrophy models.
Acta Neuropathologica 138, 415–441 (2019). doi:10.1007/s00401-019-02014-y
23.
Reduced serum immunoglobulin G concentrations in multiple sclerosis: prevalence and association with disease-modifying therapy and disease course.
Therapeutic Advances in Neurological Disorders 12, 175628641987834 (2019). doi:10.1177/1756286419878340
24.
Measurement of Tau Filament Fragmentation Provides Insights into Prion-like Spreading.
ACS Chemical Neuroscience 9, 1276–1282 (2018). doi:10.1021/acschemneuro.8b00094
25.
Tau filaments from multiple cases of sporadic and inherited Alzheimer’s disease adopt a common fold.
Acta Neuropathologica 136, 699–708 (2018). doi:10.1007/s00401-018-1914-z

1.
Structure-based classification of tauopathies.
Nature 598, 359–363 (2021). doi:10.1038/s41586-021-03911-7
2.
Seeding Propensity and Characteristics of Pathogenic αSyn Assemblies in Formalin-Fixed Human Tissue from the Enteric Nervous System, Olfactory Bulb, and Brainstem in Cases Staged for Parkinson’s Disease.
Cells 10, 139 (2021). doi:10.3390/cells10010139
3.
Microglial inclusions and neurofilament light chain release follow neuronal α-synuclein lesions in long-term brain slice cultures.
Molecular Neurodegeneration 16, 54 (2021). doi:10.1186/s13024-021-00471-2
4.
Identification of cis-acting determinants mediating the unconventional secretion of tau.
Scientific Reports 11, 12946 (2021). doi:10.1038/s41598-021-92433-3
5.
The differential solvent exposure of N-terminal residues provides ‘fingerprints’ of alpha-synuclein fibrillar polymorphs.
Journal of Biological Chemistry 100737 (2021). doi:10.1016/j.jbc.2021.100737
6.
Tau assemblies do not behave like independently acting prion-like particles in mouse neural tissue.
Acta Neuropathologica Communications 9, 41 (2021). doi:10.1186/s40478-021-01141-6
7.
TNF-α and α-synuclein fibrils differently regulate human astrocyte immune reactivity and impair mitochondrial respiration.
Cell Reports 34, 108895 (2021). doi:10.1016/j.celrep.2021.108895
8.
Phenotypic manifestation of α-synuclein strains derived from Parkinson’s disease and multiple system atrophy in human dopaminergic neurons.
Nature Communications 12, 3817 (2021). doi:10.1038/s41467-021-23682-z
9.
Overexpression of α-Synuclein by Oligodendrocytes in Transgenic Mice Does Not Recapitulate the Fibrillar Aggregation Seen in Multiple System Atrophy.
Cells 9, 2371 (2020). doi:10.3390/cells9112371
10.
Distinct alpha‐Synuclein species induced by seeding are selectively cleared by the Lysosome or the Proteasome in neuronally differentiated SH‐SY5Y cells.
Journal of Neurochemistry jnc.15174 (2020). doi:10.1111/jnc.15174. Archive: https://zenodo.org/record/4570369#.YD0kCV1KiWh
11.
Structures of α-synuclein filaments from multiple system atrophy.
Nature 585, 464–469 (2020). doi:10.1038/s41586-020-2317-6
12.
Interaction of the chaperones alpha B-crystallin and CHIP with fibrillar alpha-synuclein: Effects on internalization by cells and identification of interacting interfaces.
Biochemical and Biophysical Research Communications 527, 760–769 (2020). doi:10.1016/j.bbrc.2020.04.091
13.
The expression level of alpha-synuclein in different neuronal populations is the primary determinant of its prion-like seeding.
Scientific Reports 10, 4895 (2020). doi:10.1038/s41598-020-61757-x
14.
Novel self-replicating α-synuclein polymorphs that escape ThT monitoring can spontaneously emerge and acutely spread in neurons.
Science Advances 6, eabc4364 (2020). doi:10.1126/sciadv.abc4364
15.
Effects of pharmacological modulators of α-synuclein and tau aggregation and internalization.
Scientific Reports 10, 12827 (2020). doi:10.1038/s41598-020-69744-y
16.
Les protéinopathies infectieuses de Parkinson et d’Alzheimer.
Bulletin de l’Académie Nationale de Médecine 204, 224–231 (2020). doi:10.1016/j.banm.2019.12.019. Archive: https://hal-cea.archives-ouvertes.fr/cea-02859853
17.
Disassembly of Tau fibrils by the human Hsp70 disaggregation machinery generates small seeding-competent species.
Journal of Biological Chemistry 295, 9676–9690 (2020). doi:10.1074/jbc.RA120.013478
18.
Acute targeting of pre-amyloid seeds in transgenic mice reduces Alzheimer-like pathology later in life.
Nature Neuroscience 23, 1580–1588 (2020). doi:10.1038/s41593-020-00737-w. Archive: https://zenodo.org/record/4562254#.YDfVlF1KgdW
19.
The Role of Antibodies and Their Receptors in Protection Against Ordered Protein Assembly in Neurodegeneration.
Frontiers in Immunology 10, 1139 (2019). doi:10.3389/fimmu.2019.01139
20.
α‐synuclein oligomers and fibrils: a spectrum of species, a spectrum of toxicities.
Journal of Neurochemistry 150, 522–534 (2019). doi:10.1111/jnc.14808
21.
LRRK2 modifies α-syn pathology and spread in mouse models and human neurons.
Acta Neuropathologica 137, 961–980 (2019). doi:10.1007/s00401-019-01995-0
22.
Endogenous oligodendroglial alpha-synuclein and TPPP/p25α orchestrate alpha-synuclein pathology in experimental multiple system atrophy models.
Acta Neuropathologica 138, 415–441 (2019). doi:10.1007/s00401-019-02014-y
23.
Reduced serum immunoglobulin G concentrations in multiple sclerosis: prevalence and association with disease-modifying therapy and disease course.
Therapeutic Advances in Neurological Disorders 12, 175628641987834 (2019). doi:10.1177/1756286419878340
24.
Measurement of Tau Filament Fragmentation Provides Insights into Prion-like Spreading.
ACS Chemical Neuroscience 9, 1276–1282 (2018). doi:10.1021/acschemneuro.8b00094
25.
Tau filaments from multiple cases of sporadic and inherited Alzheimer’s disease adopt a common fold.
Acta Neuropathologica 136, 699–708 (2018). doi:10.1007/s00401-018-1914-z

1.
Structure-based classification of tauopathies.
Nature 598, 359–363 (2021). doi:10.1038/s41586-021-03911-7
2.
Seeding Propensity and Characteristics of Pathogenic αSyn Assemblies in Formalin-Fixed Human Tissue from the Enteric Nervous System, Olfactory Bulb, and Brainstem in Cases Staged for Parkinson’s Disease.
Cells 10, 139 (2021). doi:10.3390/cells10010139
3.
Microglial inclusions and neurofilament light chain release follow neuronal α-synuclein lesions in long-term brain slice cultures.
Molecular Neurodegeneration 16, 54 (2021). doi:10.1186/s13024-021-00471-2
4.
Identification of cis-acting determinants mediating the unconventional secretion of tau.
Scientific Reports 11, 12946 (2021). doi:10.1038/s41598-021-92433-3
5.
The differential solvent exposure of N-terminal residues provides ‘fingerprints’ of alpha-synuclein fibrillar polymorphs.
Journal of Biological Chemistry 100737 (2021). doi:10.1016/j.jbc.2021.100737
6.
Tau assemblies do not behave like independently acting prion-like particles in mouse neural tissue.
Acta Neuropathologica Communications 9, 41 (2021). doi:10.1186/s40478-021-01141-6
7.
TNF-α and α-synuclein fibrils differently regulate human astrocyte immune reactivity and impair mitochondrial respiration.
Cell Reports 34, 108895 (2021). doi:10.1016/j.celrep.2021.108895
8.
Phenotypic manifestation of α-synuclein strains derived from Parkinson’s disease and multiple system atrophy in human dopaminergic neurons.
Nature Communications 12, 3817 (2021). doi:10.1038/s41467-021-23682-z
9.
Overexpression of α-Synuclein by Oligodendrocytes in Transgenic Mice Does Not Recapitulate the Fibrillar Aggregation Seen in Multiple System Atrophy.
Cells 9, 2371 (2020). doi:10.3390/cells9112371
10.
Distinct alpha‐Synuclein species induced by seeding are selectively cleared by the Lysosome or the Proteasome in neuronally differentiated SH‐SY5Y cells.
Journal of Neurochemistry jnc.15174 (2020). doi:10.1111/jnc.15174. Archive: https://zenodo.org/record/4570369#.YD0kCV1KiWh
11.
Structures of α-synuclein filaments from multiple system atrophy.
Nature 585, 464–469 (2020). doi:10.1038/s41586-020-2317-6
12.
Interaction of the chaperones alpha B-crystallin and CHIP with fibrillar alpha-synuclein: Effects on internalization by cells and identification of interacting interfaces.
Biochemical and Biophysical Research Communications 527, 760–769 (2020). doi:10.1016/j.bbrc.2020.04.091
13.
The expression level of alpha-synuclein in different neuronal populations is the primary determinant of its prion-like seeding.
Scientific Reports 10, 4895 (2020). doi:10.1038/s41598-020-61757-x
14.
Novel self-replicating α-synuclein polymorphs that escape ThT monitoring can spontaneously emerge and acutely spread in neurons.
Science Advances 6, eabc4364 (2020). doi:10.1126/sciadv.abc4364
15.
Effects of pharmacological modulators of α-synuclein and tau aggregation and internalization.
Scientific Reports 10, 12827 (2020). doi:10.1038/s41598-020-69744-y
16.
Les protéinopathies infectieuses de Parkinson et d’Alzheimer.
Bulletin de l’Académie Nationale de Médecine 204, 224–231 (2020). doi:10.1016/j.banm.2019.12.019. Archive: https://hal-cea.archives-ouvertes.fr/cea-02859853
17.
Disassembly of Tau fibrils by the human Hsp70 disaggregation machinery generates small seeding-competent species.
Journal of Biological Chemistry 295, 9676–9690 (2020). doi:10.1074/jbc.RA120.013478
18.
Acute targeting of pre-amyloid seeds in transgenic mice reduces Alzheimer-like pathology later in life.
Nature Neuroscience 23, 1580–1588 (2020). doi:10.1038/s41593-020-00737-w. Archive: https://zenodo.org/record/4562254#.YDfVlF1KgdW
19.
The Role of Antibodies and Their Receptors in Protection Against Ordered Protein Assembly in Neurodegeneration.
Frontiers in Immunology 10, 1139 (2019). doi:10.3389/fimmu.2019.01139
20.
α‐synuclein oligomers and fibrils: a spectrum of species, a spectrum of toxicities.
Journal of Neurochemistry 150, 522–534 (2019). doi:10.1111/jnc.14808
21.
LRRK2 modifies α-syn pathology and spread in mouse models and human neurons.
Acta Neuropathologica 137, 961–980 (2019). doi:10.1007/s00401-019-01995-0
22.
Endogenous oligodendroglial alpha-synuclein and TPPP/p25α orchestrate alpha-synuclein pathology in experimental multiple system atrophy models.
Acta Neuropathologica 138, 415–441 (2019). doi:10.1007/s00401-019-02014-y
23.
Reduced serum immunoglobulin G concentrations in multiple sclerosis: prevalence and association with disease-modifying therapy and disease course.
Therapeutic Advances in Neurological Disorders 12, 175628641987834 (2019). doi:10.1177/1756286419878340
24.
Measurement of Tau Filament Fragmentation Provides Insights into Prion-like Spreading.
ACS Chemical Neuroscience 9, 1276–1282 (2018). doi:10.1021/acschemneuro.8b00094
25.
Tau filaments from multiple cases of sporadic and inherited Alzheimer’s disease adopt a common fold.
Acta Neuropathologica 136, 699–708 (2018). doi:10.1007/s00401-018-1914-z

Latest news

Publication in Nature by the LMB team

The paper on "Structure-based classification of Tauopathies", by Michel Goedert and his colleagues at LMB, is now online at @nature. To ...

New paper in the Molecular Neurodegeneration journal

Induced αS lesions in mouse and human brain cultures. This publication from the DZNE team shows that now we can study such lesions in a ...

RESEARCH HIGHLIGHT – A stem cell-based model offers new insights into the mechanisms of neuronal loss in Parkinson’s disease

Dr Tofaris and his team at UOXF in collaboration with Ronald Melki (CNRS) have now come up with a working laboratory model. They used ...

This project receives funding from the Innovative Medicines Initiative 2 Joint Undertaking (www.imi.europa.eu) under grant agreement No 116060. This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme and EFPIA.

This work is supported by the Swiss State Secretariat for Education‚ Research and Innovation (SERI) under contract number 17.00038.

The opinions expressed and arguments employed herein do not necessarily reflect the official views of these funding bodies.

© 2019 IMPRiND Project – created by SCIPROMPrivacy policy