IMPRiND Project

Latest news

PostDoc position at the Max Delbrück Center in Berlin

The research group ‘Neuroproteomics’ of Prof. Erich Wanker at the Max Delbrück Center in Berlin, is currently offering the position of ...

IMPRiND publishable summary now available!

The first publishable summary of the IMPRiND project activities, summarising the first year of our activities, is now available on our ...

Charlotte Delay from Janssen wins Best poster at the IMI 10th Anniversary Symposium

At the IMI 10th anniversary scientific symposium, held on 22-23 October 2018 in Brussels, 72 posters and 25 oral presentations were selected ...

Blocking aggregate propagation in neurodegenerative diseases


Blocking aggregate propagation in neurodegenerative diseases IMPRiND – Inhibiting Misfolded protein Propagation In Neurodegenerative Diseases – is an international consortium that aims to map and target critical steps in the propagation of misfolded tau and α-synuclein, considered the main culprits of neurodegeneration in Alzheimer's and Parkinson's disease respectively. Our plans are built upon:
  • Identify disease-relevant misfolded assemblies, imprint their biological properties in vitro and/or in cellulo and generate homogeneous populations in order to assay and interfere with their pathogenic effects.
  • Develop and miniaturise assays to monitor up-take, secretion, clearance and oligomerisation using bimolecular fluorescence complementation of oligomeric species or transfer of untagged assemblies to fluorescently labelled fibril-naïve cells and measure markers of early proteotoxicity that are suitable for high throughput or high content screens.
  • Perform genetic screens based on disease-relevant gene/protein networks and assess druggability of identified targets.
  • Deliver robust validation assays for these molecular events in complex cellular systems with greater functional resemblance to the native milieu of the brain such as iPSC-based models and organotypic cultures or simple model organisms such as Drosophila or zebrafish.
  • Improve existing animal models in order to standardise pathological readouts for in vivo validation of modifiers, correlate them with novel peripheral or in situ markers using microdialysis to accelerate the assessment of therapeutic interventions and relevance to humans, e.g. by transplantation of human iPSC neurons in animals.
In the IMPRiND consortium, we will construct this entire pipeline to examine the propagation of α-synuclein and tau and test their tractability against disease progression.
IMPRIND started in March 2017 and will run until February 2021.

Most recent publications

1.
Propagation of α-Synuclein Strains within Human Reconstructed Neuronal Network.
Stem Cell Reports (2019). doi:10.1016/j.stemcr.2018.12.007
2.
Clustering of Tau fibrils impairs the synaptic composition of α3‐Na+/K+‐ATPase and AMPA receptors.
The EMBO Journal e99871 (2019). doi:10.15252/embj.201899871
3.
Heparin-induced tau filaments are polymorphic and differ from those in Alzheimer’s and Pick’s disease.
bioRxiv 468892 (2018). doi:10.1101/468892
4.
Assessment of the efficacy of different procedures that remove and disassemble alpha-synuclein, tau and A-beta fibrils from laboratory material and surfaces.
Scientific Reports 8, 10788 (2018). doi:10.1038/s41598-018-28856-2
5.
Measurement of Tau Filament Fragmentation Provides Insights into Prion-like Spreading.
ACS Chemical Neuroscience 9, 1276-1282 (2018). doi:10.1021/acschemneuro.8b00094
6.
Tau Filaments and the Development of Positron Emission Tomography Tracers.
Frontiers in Neurology 9, (2018). doi:10.3389/fneur.2018.00070
7.
Structures of filaments from Pick’s disease reveal a novel tau protein fold.
Nature 561, 137-140 (2018). doi:10.1038/s41586-018-0454-y
8.
Tau filaments from multiple cases of sporadic and inherited Alzheimer’s disease adopt a common fold.
Acta Neuropathologica 136, 699-708 (2018). doi:10.1007/s00401-018-1914-z
9.
123I-FP-CIT SPECT [(123) I-2β-carbomethoxy-3β-(4-iodophenyl)-N-(3-fluoropropyl) nortropane single photon emission computed tomography] Imaging in a p.A53T α-synuclein Parkinson’s disease cohort versus Parkinson’s disease: 123I-FP-CIT IMAGING IN A P.A53T PD COHORT.
Movement Disorders 33, 1734-1739 (2018). doi:10.1002/mds.27451
10.
Neurodegeneration and the ordered assembly of α-synuclein.
Cell and Tissue Research 373, 137-148 (2018). doi:10.1007/s00441-017-2706-9
11.
A Critical Assessment of Exosomes in the Pathogenesis and Stratification of Parkinson’s Disease.
Journal of Parkinson’s Disease 7, 569-576 (2017). doi:10.3233/JPD-171176
12.
Cryo-EM structures of tau filaments from Alzheimer’s disease.
Nature 547, 185-190 (2017). doi:10.1038/nature23002

1.
Propagation of α-Synuclein Strains within Human Reconstructed Neuronal Network.
Stem Cell Reports (2019). doi:10.1016/j.stemcr.2018.12.007
2.
Clustering of Tau fibrils impairs the synaptic composition of α3‐Na+/K+‐ATPase and AMPA receptors.
The EMBO Journal e99871 (2019). doi:10.15252/embj.201899871
3.
Heparin-induced tau filaments are polymorphic and differ from those in Alzheimer’s and Pick’s disease.
bioRxiv 468892 (2018). doi:10.1101/468892
4.
Assessment of the efficacy of different procedures that remove and disassemble alpha-synuclein, tau and A-beta fibrils from laboratory material and surfaces.
Scientific Reports 8, 10788 (2018). doi:10.1038/s41598-018-28856-2
5.
Measurement of Tau Filament Fragmentation Provides Insights into Prion-like Spreading.
ACS Chemical Neuroscience 9, 1276-1282 (2018). doi:10.1021/acschemneuro.8b00094
6.
Tau Filaments and the Development of Positron Emission Tomography Tracers.
Frontiers in Neurology 9, (2018). doi:10.3389/fneur.2018.00070
7.
Structures of filaments from Pick’s disease reveal a novel tau protein fold.
Nature 561, 137-140 (2018). doi:10.1038/s41586-018-0454-y
8.
Tau filaments from multiple cases of sporadic and inherited Alzheimer’s disease adopt a common fold.
Acta Neuropathologica 136, 699-708 (2018). doi:10.1007/s00401-018-1914-z
9.
123I-FP-CIT SPECT [(123) I-2β-carbomethoxy-3β-(4-iodophenyl)-N-(3-fluoropropyl) nortropane single photon emission computed tomography] Imaging in a p.A53T α-synuclein Parkinson’s disease cohort versus Parkinson’s disease: 123I-FP-CIT IMAGING IN A P.A53T PD COHORT.
Movement Disorders 33, 1734-1739 (2018). doi:10.1002/mds.27451
10.
Neurodegeneration and the ordered assembly of α-synuclein.
Cell and Tissue Research 373, 137-148 (2018). doi:10.1007/s00441-017-2706-9
11.
A Critical Assessment of Exosomes in the Pathogenesis and Stratification of Parkinson’s Disease.
Journal of Parkinson’s Disease 7, 569-576 (2017). doi:10.3233/JPD-171176
12.
Cryo-EM structures of tau filaments from Alzheimer’s disease.
Nature 547, 185-190 (2017). doi:10.1038/nature23002

1.
Propagation of α-Synuclein Strains within Human Reconstructed Neuronal Network.
Stem Cell Reports (2019). doi:10.1016/j.stemcr.2018.12.007
2.
Clustering of Tau fibrils impairs the synaptic composition of α3‐Na+/K+‐ATPase and AMPA receptors.
The EMBO Journal e99871 (2019). doi:10.15252/embj.201899871
3.
Heparin-induced tau filaments are polymorphic and differ from those in Alzheimer’s and Pick’s disease.
bioRxiv 468892 (2018). doi:10.1101/468892
4.
Assessment of the efficacy of different procedures that remove and disassemble alpha-synuclein, tau and A-beta fibrils from laboratory material and surfaces.
Scientific Reports 8, 10788 (2018). doi:10.1038/s41598-018-28856-2
5.
Measurement of Tau Filament Fragmentation Provides Insights into Prion-like Spreading.
ACS Chemical Neuroscience 9, 1276-1282 (2018). doi:10.1021/acschemneuro.8b00094
6.
Tau Filaments and the Development of Positron Emission Tomography Tracers.
Frontiers in Neurology 9, (2018). doi:10.3389/fneur.2018.00070
7.
Structures of filaments from Pick’s disease reveal a novel tau protein fold.
Nature 561, 137-140 (2018). doi:10.1038/s41586-018-0454-y
8.
Tau filaments from multiple cases of sporadic and inherited Alzheimer’s disease adopt a common fold.
Acta Neuropathologica 136, 699-708 (2018). doi:10.1007/s00401-018-1914-z
9.
123I-FP-CIT SPECT [(123) I-2β-carbomethoxy-3β-(4-iodophenyl)-N-(3-fluoropropyl) nortropane single photon emission computed tomography] Imaging in a p.A53T α-synuclein Parkinson’s disease cohort versus Parkinson’s disease: 123I-FP-CIT IMAGING IN A P.A53T PD COHORT.
Movement Disorders 33, 1734-1739 (2018). doi:10.1002/mds.27451
10.
Neurodegeneration and the ordered assembly of α-synuclein.
Cell and Tissue Research 373, 137-148 (2018). doi:10.1007/s00441-017-2706-9
11.
A Critical Assessment of Exosomes in the Pathogenesis and Stratification of Parkinson’s Disease.
Journal of Parkinson’s Disease 7, 569-576 (2017). doi:10.3233/JPD-171176
12.
Cryo-EM structures of tau filaments from Alzheimer’s disease.
Nature 547, 185-190 (2017). doi:10.1038/nature23002

1.
Propagation of α-Synuclein Strains within Human Reconstructed Neuronal Network.
Stem Cell Reports (2019). doi:10.1016/j.stemcr.2018.12.007
2.
Clustering of Tau fibrils impairs the synaptic composition of α3‐Na+/K+‐ATPase and AMPA receptors.
The EMBO Journal e99871 (2019). doi:10.15252/embj.201899871
3.
Heparin-induced tau filaments are polymorphic and differ from those in Alzheimer’s and Pick’s disease.
bioRxiv 468892 (2018). doi:10.1101/468892
4.
Assessment of the efficacy of different procedures that remove and disassemble alpha-synuclein, tau and A-beta fibrils from laboratory material and surfaces.
Scientific Reports 8, 10788 (2018). doi:10.1038/s41598-018-28856-2
5.
Measurement of Tau Filament Fragmentation Provides Insights into Prion-like Spreading.
ACS Chemical Neuroscience 9, 1276-1282 (2018). doi:10.1021/acschemneuro.8b00094
6.
Tau Filaments and the Development of Positron Emission Tomography Tracers.
Frontiers in Neurology 9, (2018). doi:10.3389/fneur.2018.00070
7.
Structures of filaments from Pick’s disease reveal a novel tau protein fold.
Nature 561, 137-140 (2018). doi:10.1038/s41586-018-0454-y
8.
Tau filaments from multiple cases of sporadic and inherited Alzheimer’s disease adopt a common fold.
Acta Neuropathologica 136, 699-708 (2018). doi:10.1007/s00401-018-1914-z
9.
123I-FP-CIT SPECT [(123) I-2β-carbomethoxy-3β-(4-iodophenyl)-N-(3-fluoropropyl) nortropane single photon emission computed tomography] Imaging in a p.A53T α-synuclein Parkinson’s disease cohort versus Parkinson’s disease: 123I-FP-CIT IMAGING IN A P.A53T PD COHORT.
Movement Disorders 33, 1734-1739 (2018). doi:10.1002/mds.27451
10.
Neurodegeneration and the ordered assembly of α-synuclein.
Cell and Tissue Research 373, 137-148 (2018). doi:10.1007/s00441-017-2706-9
11.
A Critical Assessment of Exosomes in the Pathogenesis and Stratification of Parkinson’s Disease.
Journal of Parkinson’s Disease 7, 569-576 (2017). doi:10.3233/JPD-171176
12.
Cryo-EM structures of tau filaments from Alzheimer’s disease.
Nature 547, 185-190 (2017). doi:10.1038/nature23002

1.
Propagation of α-Synuclein Strains within Human Reconstructed Neuronal Network.
Stem Cell Reports (2019). doi:10.1016/j.stemcr.2018.12.007
2.
Clustering of Tau fibrils impairs the synaptic composition of α3‐Na+/K+‐ATPase and AMPA receptors.
The EMBO Journal e99871 (2019). doi:10.15252/embj.201899871
3.
Heparin-induced tau filaments are polymorphic and differ from those in Alzheimer’s and Pick’s disease.
bioRxiv 468892 (2018). doi:10.1101/468892
4.
Assessment of the efficacy of different procedures that remove and disassemble alpha-synuclein, tau and A-beta fibrils from laboratory material and surfaces.
Scientific Reports 8, 10788 (2018). doi:10.1038/s41598-018-28856-2
5.
Measurement of Tau Filament Fragmentation Provides Insights into Prion-like Spreading.
ACS Chemical Neuroscience 9, 1276-1282 (2018). doi:10.1021/acschemneuro.8b00094
6.
Tau Filaments and the Development of Positron Emission Tomography Tracers.
Frontiers in Neurology 9, (2018). doi:10.3389/fneur.2018.00070
7.
Structures of filaments from Pick’s disease reveal a novel tau protein fold.
Nature 561, 137-140 (2018). doi:10.1038/s41586-018-0454-y
8.
Tau filaments from multiple cases of sporadic and inherited Alzheimer’s disease adopt a common fold.
Acta Neuropathologica 136, 699-708 (2018). doi:10.1007/s00401-018-1914-z
9.
123I-FP-CIT SPECT [(123) I-2β-carbomethoxy-3β-(4-iodophenyl)-N-(3-fluoropropyl) nortropane single photon emission computed tomography] Imaging in a p.A53T α-synuclein Parkinson’s disease cohort versus Parkinson’s disease: 123I-FP-CIT IMAGING IN A P.A53T PD COHORT.
Movement Disorders 33, 1734-1739 (2018). doi:10.1002/mds.27451
10.
Neurodegeneration and the ordered assembly of α-synuclein.
Cell and Tissue Research 373, 137-148 (2018). doi:10.1007/s00441-017-2706-9
11.
A Critical Assessment of Exosomes in the Pathogenesis and Stratification of Parkinson’s Disease.
Journal of Parkinson’s Disease 7, 569-576 (2017). doi:10.3233/JPD-171176
12.
Cryo-EM structures of tau filaments from Alzheimer’s disease.
Nature 547, 185-190 (2017). doi:10.1038/nature23002

Latest news

PostDoc position at the Max Delbrück Center in Berlin

The research group ‘Neuroproteomics’ of Prof. Erich Wanker at the Max Delbrück Center in Berlin, is currently offering the position of ...

IMPRiND publishable summary now available!

The first publishable summary of the IMPRiND project activities, summarising the first year of our activities, is now available on our ...

Charlotte Delay from Janssen wins Best poster at the IMI 10th Anniversary Symposium

At the IMI 10th anniversary scientific symposium, held on 22-23 October 2018 in Brussels, 72 posters and 25 oral presentations were selected ...

This project receives funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement No 116060. This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme and EFPIA.

This work is supported by the Swiss State Secretariat for Education‚ Research and Innovation (SERI) under contract number 17.00038.

The opinions expressed and arguments employed herein do not necessarily reflect the official views of these funding bodies.